4,693 research outputs found

    Closed-loop supply chain coordination based on recyclers\u27 competition model

    Get PDF
    In a closed-loop supply chain led by manufacturing enterprises, there are often two or more recyclers that are very competitive among each other. The manufacturer may also provide many recycling contracts in order to identify recyclersā€™ private information. This paper examines a closed-loop supply chain consisting of a manufacturer at the core of the supply chain and two competing recyclers. In order to strike a balance between its own interest and overall interest manufacturer provides two different recycling contracts: price contract and quantity contract. Two situations have been analyzed in this paper: the first in which only advantage recycler adopts quantity contract and the second in which both recyclers adopt quantity contract. A numerical simulation has been carried out according to some current data of an enterprise. In case in which the advantage recycler adopts quantity contract and the inferior recycler adopts price contract, the closed-loop supply chain has reached its equilibrium and the interests of all parties have been balanced

    Optimizing production scheduling of steel plate hot rolling for economic load dispatch under time-of-use electricity pricing

    Get PDF
    Time-of-Use (TOU) electricity pricing provides an opportunity for industrial users to cut electricity costs. Although many methods for Economic Load Dispatch (ELD) under TOU pricing in continuous industrial processing have been proposed, there are still difficulties in batch-type processing since power load units are not directly adjustable and nonlinearly depend on production planning and scheduling. In this paper, for hot rolling, a typical batch-type and energy intensive process in steel industry, a production scheduling optimization model for ELD is proposed under TOU pricing, in which the objective is to minimize electricity costs while considering penalties caused by jumps between adjacent slabs. A NSGA-II based multi-objective production scheduling algorithm is developed to obtain Pareto-optimal solutions, and then TOPSIS based multi-criteria decision-making is performed to recommend an optimal solution to facilitate filed operation. Experimental results and analyses show that the proposed method cuts electricity costs in production, especially in case of allowance for penalty score increase in a certain range. Further analyses show that the proposed method has effect on peak load regulation of power grid.Comment: 13 pages, 6 figures, 4 table

    A Complete Reference of the Analytical Synchrotron External Shock Models of Gamma-Ray Bursts

    Full text link
    Gamma-ray bursts are most luminous explosions in the universe. Their ejecta are believed to move towards Earth with a relativistic speed. The interaction between this "relativistic jet" and a circum burst medium drives a pair of (forward and reverse) shocks. The electrons accelerated in these shocks radiate synchrotron emission to power the broad-band afterglow of GRBs. The external shock theory is an elegant theory, since it invokes a limit number of model parameters, and has well predicted spectral and temporal properties. On the other hand, depending on many factors (e.g. the energy content, ambient density profile, collimation of the ejecta, forward vs. reverse shock dynamics, and synchrotron spectral regimes), there is a wide variety of the models. These models have distinct predictions on the afterglow decaying indices, the spectral indices, and the relations between them (the so-called "closure relations"), which have been widely used to interpret the rich multi-wavelength afterglow observations. This review article provides a complete reference of all the analytical synchrotron external shock afterglow models by deriving the temporal and spectral indices of all the models in all spectral regimes, including some regimes that have not been published before. The review article is designated to serve as a useful tool for afterglow observers to quickly identify relevant models to interpret their data. The limitations of the analytical models are reviewed, with a list of situations summarized when numerical treatments are needed.Comment: 119 pages, 45 figures, invited review accepted for publication in New Astronomy Review

    Dual Long Short-Term Memory Networks for Sub-Character Representation Learning

    Full text link
    Characters have commonly been regarded as the minimal processing unit in Natural Language Processing (NLP). But many non-latin languages have hieroglyphic writing systems, involving a big alphabet with thousands or millions of characters. Each character is composed of even smaller parts, which are often ignored by the previous work. In this paper, we propose a novel architecture employing two stacked Long Short-Term Memory Networks (LSTMs) to learn sub-character level representation and capture deeper level of semantic meanings. To build a concrete study and substantiate the efficiency of our neural architecture, we take Chinese Word Segmentation as a research case example. Among those languages, Chinese is a typical case, for which every character contains several components called radicals. Our networks employ a shared radical level embedding to solve both Simplified and Traditional Chinese Word Segmentation, without extra Traditional to Simplified Chinese conversion, in such a highly end-to-end way the word segmentation can be significantly simplified compared to the previous work. Radical level embeddings can also capture deeper semantic meaning below character level and improve the system performance of learning. By tying radical and character embeddings together, the parameter count is reduced whereas semantic knowledge is shared and transferred between two levels, boosting the performance largely. On 3 out of 4 Bakeoff 2005 datasets, our method surpassed state-of-the-art results by up to 0.4%. Our results are reproducible, source codes and corpora are available on GitHub.Comment: Accepted & forthcoming at ITNG-201

    Transport properties of dense deuterium-tritium plasmas

    Full text link
    Consistent descriptions of the equation of states, and information about transport coefficients of deuterium-tritium mixture are demonstrated through quantum molecular dynamic (QMD) simulations (up to a density of 600 g/cm3^{3} and a temperature of 10410^{4} eV). Diffusion coefficients and viscosity are compared with one component plasma model in different regimes from the strong coupled to the kinetic one. Electronic and radiative transport coefficients, which are compared with models currently used in hydrodynamic simulations of inertial confinement fusion, are evaluated up to 800 eV. The Lorentz number is also discussed from the highly degenerate to the intermediate region.Comment: 4 pages, 3 figure

    Significance of rice sheath photosynthesis: Yield determination by 14C radio-autography.

    Get PDF
    Using high-yielding hybrid rice Liangyopeijiu (LYP9), its male parent 9311 and hybrid rice Shanyou 63 (SY63) as the experimental materials, the photosynthesis of rice sheath was studied by 14C radio-autography. The results showed that rice sheath could trap sunlight and produce photosynthates, and these photosynthates were transported mainly to the spikes. The 14C-labeled photosynthates transported to the spikes of LYP9 and 9311 were significantly more than those of SY63 after 72 hr, which indicated that differences among genotypes existed for contribution rates of sheath photosynthesis to economical yield. Transport of the 14C-labeled photosynthates to the spikes was faster in the sheaths of LYP9 than in those of 9311and SY63 at 12 and 72 hr after treatment. Hybrid rice housed the heterosis and were influenced by the inheritable characters of its parents. Since photosynthesis of rice sheath is an important supplement to rice yield, inefficient photosynthesis in rice sheaths could cause serious yield reduction.Key Words: Hybrid rice, photosynthates, spike
    • ā€¦
    corecore